Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: covidwho-2257144

ABSTRACT

Cervical cancer is the fourth most common cancer among women worldwide. The main factor associated with the onset and progression of this neoplasia is the human papillomavirus (HPV) infection. The HPV-oncogenes E6 and E7 are critical drivers of cellular transformation, promoting the expression of oncogenes such as KCNH1. The phytochemical α-mangostin (AM) is a potent antineoplastic and antiviral compound. However, its effects on HPV oncogenes and KCNH1 gene expression remain unknown. This study evaluated the effects of AM on cell proliferation, cell cycle distribution and gene expression, including its effects on tumor growth in xenografted mice. AM inhibited cell proliferation in a concentration-dependent manner, being the most sensitive cell lines those with the highest number of HPV16 copies. In addition, AM promoted G1-cell cycle arrest in CaSki cells, while led to cell death in SiHa and HeLa cells. Of interest was the finding of an AM-dependent decreased gene expression of E6, E7 and KCNH1 both in vitro and in vivo, as well as the modulation of cytokine expression, Ki-67, and tumor growth inhibition. On these bases, we suggest that AM represents a good option as an adjuvant for the treatment and prevention of cervical cancer.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Animals , Mice , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , HeLa Cells , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Repressor Proteins/genetics , Oncogenes , Cell Proliferation , Gene Expression , Ether-A-Go-Go Potassium Channels/genetics
2.
Arch Med Res ; 54(2): 105-112, 2023 02.
Article in English | MEDLINE | ID: covidwho-2283669

ABSTRACT

OBJECTIVE: The innate immune response in humans involves a wide variety of factors, including the tripartite motif-containing 5α (TRIM5α) and 22 (TRIM22) as a cluster of genes on chromosome 11 that have exhibited antiviral activity in several viral infections. We analyzed the correlation of the expression of TRIM5α and TRIM22 with the severity of Coronavirus Disease 2019 (COVID-19) in blood samples of 330 patients, divided into two groups of severe and mild disease, versus the healthy individuals who never had contact with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). METHODS: The transcription level of TRIM5α and TRIM22 was determined by quantitative real-time polymerase chain reaction (qPCR). The laboratory values were collected from the patients' records. RESULTS: The expression of both genes was significantly lower in the severe group containing the hospitalized patients than in both the mild group and the control group. However, in the mild group, TRIM22 expression was significantly higher (p <0.0001) than in the control group while TRIM5α expression was not significantly different between these two groups. We found a relationship between the cycle threshold (Ct) value of patients and the expression of the aforementioned genes. CONCLUSION: The results of our study indicated that lower Ct values or higher RNA viral load might be associated with the downregulation of TRIM5α and TRIM22 and the severity of COVID-19. Additional studies are needed to confirm the results of this study.


Subject(s)
COVID-19 , Repressor Proteins , Humans , Repressor Proteins/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , SARS-CoV-2 , Disease Progression , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism
3.
Lancet Respir Med ; 10(2): 136-138, 2022 02.
Article in English | MEDLINE | ID: covidwho-2114039
4.
J Mol Biol ; 434(6): 167277, 2022 03 30.
Article in English | MEDLINE | ID: covidwho-2061566

ABSTRACT

Establishment of the interferon (IFN)-mediated antiviral state provides a crucial initial line of defense against viral infection. Numerous genes that contribute to this antiviral state remain to be identified. Using a loss-of-function strategy, we screened an original library of 1156 siRNAs targeting 386 individual curated human genes in stimulated microglial cells infected with Zika virus (ZIKV), an emerging RNA virus that belongs to the flavivirus genus. The screen recovered twenty-one potential host proteins that modulate ZIKV replication in an IFN-dependent manner, including the previously known IFITM3 and LY6E. Further characterization contributed to delineate the spectrum of action of these genes towards other pathogenic RNA viruses, including Hepatitis C virus and SARS-CoV-2. Our data revealed that APOL3 acts as a proviral factor for ZIKV and several other related and unrelated RNA viruses. In addition, we showed that MTA2, a chromatin remodeling factor, possesses potent flavivirus-specific antiviral functions induced by IFN. Our work identified previously unrecognized genes that modulate the replication of RNA viruses in an IFN-dependent manner, opening new perspectives to target weakness points in the life cycle of these viruses.


Subject(s)
Flavivirus , Interferons , Virus Replication , Apolipoproteins L/genetics , Apolipoproteins L/metabolism , Flavivirus/physiology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Interferons/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , SARS-CoV-2/physiology , Zika Virus/physiology
5.
Hum Genomics ; 16(1): 33, 2022 08 26.
Article in English | MEDLINE | ID: covidwho-2021342

ABSTRACT

BACKGROUND: The tripartite motif containing (TRIM)-22 participates in innate immune responses and exhibits antiviral activities. The present study aimed to assess of the relationship between TRIM22 single-nucleotide polymorphisms and clinical parameters with the coronavirus disease 2019 (COVID-19) infection severity. METHODS: TRIM22 polymorphisms (rs7113258, rs7935564, and rs1063303) were genotyped using TaqMan polymerase chain reaction (PCR) assay in 495 dead and 497 improved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive patients. RESULTS: In this study, the frequencies of TRIM22 rs1063303 GG, rs7935564 GG, and rs7113258 TT were significantly higher in dead patients than in improved patients, and higher viral load with low PCR Ct value was noticed in dead patients. The multivariate logistic regression analysis revealed that the lower levels of low-density lipoprotein (LDL), cholesterol, PCR Ct value, and lower 25-hydroxyvitamin D, and also higher levels of erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and TRIM22 rs1063303 GG, rs7113258 TT, and rs3824949 GG genotypes were related to the COVID-19 infection severity. CONCLUSION: Our finding proved the probable relationship between the COVID-19 infection severity with the genotypes of TRIM22 SNPs and clinical parameters. More research is required worldwide to show the association between the COVID-19 infection severity and host genetic factors.


Subject(s)
COVID-19 , Minor Histocompatibility Antigens , Polymorphism, Single Nucleotide , Repressor Proteins , Tripartite Motif Proteins , Humans , COVID-19/genetics , COVID-19/pathology , Minor Histocompatibility Antigens/genetics , Repressor Proteins/genetics , SARS-CoV-2 , Tripartite Motif Proteins/genetics
6.
Dis Markers ; 2022: 6780710, 2022.
Article in English | MEDLINE | ID: covidwho-1868808

ABSTRACT

Background: To date (14 January 2022), the incidence and related mortality rate of COVID-19 in America, Europe, and Asia despite administrated of billions doses of many approved vaccines are still higher than in Egypt. Epigenetic alterations mediate the effects of environmental factors on the regulation of genetic material causing many diseases. Objective: We aimed to explore the methylation status of HeyL promoter, a downstream transcription factor in Notch signal, an important regulator of cell proliferation and differentiation blood, pulmonary epithelial, and nerves cells. Methods: Our objective was achieved by DNA sequencing of the product from methyl-specific PCR of HeyL promoter after bisulfite modification of DNA extracted from the blood samples of 30 COVID-19 patients and 20 control health subjects and studying its association with clinical-pathological biomarkers. Results: We found that the HeyL promoter was partial-methylated in Egyptian COVID-19 patients and control healthy subjects compared to full methylated one that was published in GenBank. We identified unmethylated CpG (TG) flanking the response elements within HeyL promoter in Egyptian COVID-19 patients and control healthy subjects vs. methylated CpG (CG) in reference sequence (GenBank). Also, we observed that the frequency of partial-methylated HeyL promoter was higher in COVID-19 patients and associated with aging, fever, severe pneumonia, ageusia/anosmia, and dry cough compared to control healthy subjects. Conclusion: We concluded that hypomethylated HeyL promoter in Egyptian population may facilitate the binding of transcription factors to their binding sites, thus enhancing its regulatory action on the blood, pulmonary epithelium, and nerves cells in contrast to full methylated one that was published in GenBank; thus, addition of demethylating agents to the treatment protocol of COVID-19 may improve the clinical outcomes. Administration of therapy must be based on determination of methylation status of HeyL, a novel prognostic marker for severe illness in COVID-19 patients.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , COVID-19 , Repressor Proteins , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , COVID-19/genetics , DNA Methylation , Egypt/epidemiology , Humans , Promoter Regions, Genetic , Repressor Proteins/genetics
7.
Nature ; 607(7917): 97-103, 2022 07.
Article in English | MEDLINE | ID: covidwho-1730298

ABSTRACT

Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2-4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease.


Subject(s)
COVID-19 , Critical Illness , Genome, Human , Host-Pathogen Interactions , Whole Genome Sequencing , ATP-Binding Cassette Transporters , COVID-19/genetics , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , Cell Adhesion Molecules , Critical Care , Critical Illness/mortality , E-Selectin , Factor VIII , Fucosyltransferases , Genome, Human/genetics , Genome-Wide Association Study , Host-Pathogen Interactions/genetics , Humans , Interleukin-10 Receptor beta Subunit , Lectins, C-Type , Mucin-1 , Nerve Tissue Proteins , Phospholipid Transfer Proteins , Receptors, Cell Surface , Repressor Proteins , SARS-CoV-2/pathogenicity
8.
Nat Commun ; 12(1): 7193, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1565717

ABSTRACT

Programmed ribosomal frameshifting (PRF) is a fundamental gene expression event in many viruses, including SARS-CoV-2. It allows production of essential viral, structural and replicative enzymes that are encoded in an alternative reading frame. Despite the importance of PRF for the viral life cycle, it is still largely unknown how and to what extent cellular factors alter mechanical properties of frameshift elements and thereby impact virulence. This prompted us to comprehensively dissect the interplay between the SARS-CoV-2 frameshift element and the host proteome. We reveal that the short isoform of the zinc-finger antiviral protein (ZAP-S) is a direct regulator of PRF in SARS-CoV-2 infected cells. ZAP-S overexpression strongly impairs frameshifting and inhibits viral replication. Using in vitro ensemble and single-molecule techniques, we further demonstrate that ZAP-S directly interacts with the SARS-CoV-2 RNA and interferes with the folding of the frameshift RNA element. Together, these data identify ZAP-S as a host-encoded inhibitor of SARS-CoV-2 frameshifting and expand our understanding of RNA-based gene regulation.


Subject(s)
Frameshifting, Ribosomal , RNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , SARS-CoV-2/genetics , COVID-19 , HEK293 Cells , Host-Pathogen Interactions , Humans , Nucleic Acid Conformation , Protein Isoforms , Proteome , RNA, Viral/genetics , SARS-CoV-2/physiology , Virus Replication
9.
BMJ Case Rep ; 14(10)2021 Oct 13.
Article in English | MEDLINE | ID: covidwho-1467679

ABSTRACT

Solitary fibrous tumours (SFTs) are rare mesenchymal tumours that are mostly seen in the pleura. Lately, they have also been described in other locations. Recent discovery of the NAB2-STAT6 fusion gene which is specific for SFTs has led to an accurate diagnosis of SFTs. The occurrence of SFTs in the mesentery is very rarely reported in the literature. We report a case of a 63-year-old female who presented with abdominal pain, rectal bleeding and Fusobacterium bacteraemia, who was ultimately found to have a mesenteric SFT.


Subject(s)
Sepsis , Solitary Fibrous Tumors , Biomarkers, Tumor , Female , Fusobacterium , Humans , Immunohistochemistry , Mesentery , Middle Aged , Repressor Proteins/metabolism , STAT6 Transcription Factor/metabolism , Solitary Fibrous Tumors/complications , Solitary Fibrous Tumors/diagnostic imaging , Solitary Fibrous Tumors/surgery
10.
Molecules ; 25(12)2020 Jun 26.
Article in English | MEDLINE | ID: covidwho-1389454

ABSTRACT

Viruses can be spread from one person to another; therefore, they may cause disorders in many people, sometimes leading to epidemics and even pandemics. New, previously unstudied viruses and some specific mutant or recombinant variants of known viruses constantly appear. An example is a variant of coronaviruses (CoV) causing severe acute respiratory syndrome (SARS), named SARS-CoV-2. Some antiviral drugs, such as remdesivir as well as antiretroviral drugs including darunavir, lopinavir, and ritonavir are suggested to be effective in treating disorders caused by SARS-CoV-2. There are data on the utilization of antiretroviral drugs against SARS-CoV-2. Since there are many studies aimed at the identification of the molecular mechanisms of human immunodeficiency virus type 1 (HIV-1) infection and the development of novel therapeutic approaches against HIV-1, we used HIV-1 for our case study to identify possible molecular pathways shared by SARS-CoV-2 and HIV-1. We applied a text and data mining workflow and identified a list of 46 targets, which can be essential for the development of infections caused by SARS-CoV-2 and HIV-1. We show that SARS-CoV-2 and HIV-1 share some molecular pathways involved in inflammation, immune response, cell cycle regulation.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/metabolism , Data Mining/methods , HIV Infections/epidemiology , HIV Infections/metabolism , Host-Pathogen Interactions/immunology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/metabolism , Anti-Inflammatory Agents/therapeutic use , Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Complement System Proteins/genetics , Complement System Proteins/immunology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Databases, Genetic , Gene Expression Regulation , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/drug effects , HIV-1/immunology , HIV-1/pathogenicity , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Immunity, Innate/drug effects , Immunologic Factors/therapeutic use , Inflammation , Interferons/genetics , Interferons/immunology , Interleukins/genetics , Interleukins/immunology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Repressor Proteins/genetics , Repressor Proteins/immunology , SARS-CoV-2 , Signal Transduction , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology
11.
Adv Clin Exp Med ; 30(8): 839-848, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1359472

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are involved in the development of many cancers, including colorectal cancer (CRC). FEZ family zinc finger 1 antisense RNA 1 (FEZF1-AS1) is a key lncRNA in the regulation of CRC progression, but its potential molecular mechanisms need to be further explored. OBJECTIVES: To investigate the mechanism of lncRNA FEZF1-AS1 in the progression of CRC. MATERIAL AND METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to measure FEZF1-AS1 and miR-363-3p expression. Cell proliferation, migration and invasion were analyzed using Cell Counting Kit-8 (CCK-8) and transwell assays. Protein expression of epithelial-mesenchymal transformation (EMT)-related markers and paired-related homeobox 1 (PRRX1) were determined using western blot analysis. The interactions among FEZF1-AS1, miR-363-3p and PRRX1 were verified with dual-luciferase reporter assay. A xenograft model was constructed in vivo to confirm the role of FEZF1-AS1 in CRC tumor growth. RESULTS: We demonstrated that FEZF1-AS1 expression was upregulated in CRC, and its silencing reduced CRC cell proliferation, migration, invasion, and EMT. MiR-363-3p could be inhibited by FEZF1-AS1, which inhibitor could reverse the suppressive effect of FEZF1-AS1 silencing on CRC progression. Paired-related homeobox 1 could be targeted by miR-363-3p, and the inhibitory effect of FEZF1-AS1 knockdown on CRC progression could also be eliminated by PRRX1 overexpression. Furthermore, interference of FEZF1-AS1 reduced the tumor growth of CRC in vivo. CONCLUSIONS: Our data demonstrate that FEZF1-AS1 regulated PRRX1 expression to promote CRC progression via inhibition of miR-363-3p.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Cell Proliferation , Colorectal Neoplasms/genetics , Epithelial-Mesenchymal Transition , Homeodomain Proteins , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Repressor Proteins
12.
Am J Respir Cell Mol Biol ; 65(4): 403-412, 2021 10.
Article in English | MEDLINE | ID: covidwho-1237350

ABSTRACT

Mechanical ventilation is a known risk factor for delirium, a cognitive impairment characterized by dysfunction of the frontal cortex and hippocampus. Although IL-6 is upregulated in mechanical ventilation-induced lung injury (VILI) and may contribute to delirium, it is not known whether the inhibition of systemic IL-6 mitigates delirium-relevant neuropathology. To histologically define neuropathological effects of IL-6 inhibition in an experimental VILI model, VILI was simulated in anesthetized adult mice using a 35 cc/kg tidal volume mechanical ventilation model. There were two control groups, as follow: 1) spontaneously breathing or 2) anesthetized and mechanically ventilated with 10 cc/kg tidal volume to distinguish effects of anesthesia from VILI. Two hours before inducing VILI, mice were treated with either anti-IL-6 antibody, anti-IL-6 receptor antibody, or saline. Neuronal injury, stress, and inflammation were assessed using immunohistochemistry. CC3 (cleaved caspase-3), a neuronal apoptosis marker, was significantly increased in the frontal (P < 0.001) and hippocampal (P < 0.0001) brain regions and accompanied by significant increases in c-Fos and heat shock protein-90 in the frontal cortices of VILI mice compared with control mice (P < 0.001). These findings were not related to cerebral hypoxia, and there was no evidence of irreversible neuronal death. Frontal and hippocampal neuronal CC3 were significantly reduced with anti-IL-6 antibody (P < 0.01 and P < 0.0001, respectively) and anti-IL-6 receptor antibody (P < 0.05 and P < 0.0001, respectively) compared with saline VILI mice. In summary, VILI induces potentially reversible neuronal injury and inflammation in the frontal cortex and hippocampus, which is mitigated with systemic IL-6 inhibition. These data suggest a potentially novel neuroprotective role of systemic IL-6 inhibition that justifies further investigation.


Subject(s)
Antibodies/pharmacology , Apoptosis/drug effects , Delirium/metabolism , Interleukin-6/antagonists & inhibitors , Neurons/metabolism , Ventilator-Induced Lung Injury/metabolism , Animals , Delirium/drug therapy , Delirium/pathology , Disease Models, Animal , Female , Frontal Lobe/injuries , Frontal Lobe/metabolism , Frontal Lobe/pathology , HSP90 Heat-Shock Proteins/metabolism , Hippocampus/injuries , Hippocampus/metabolism , Hippocampus/pathology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/metabolism , Mice , Neurons/pathology , Proto-Oncogene Proteins c-fos/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Ventilator-Induced Lung Injury/drug therapy , Ventilator-Induced Lung Injury/pathology
13.
Mol Biol Cell ; 32(14): 1273-1282, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1233836

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has triggered global health and economic crises. Here we report the effects of SARS-CoV-2 infection on peroxisomes of human cell lines Huh-7 and SK-N-SH. Peroxisomes undergo dramatic changes in morphology in SARS-CoV-2-infected cells. Rearrangement of peroxisomal membranes is followed by redistribution of peroxisomal matrix proteins to the cytosol, resulting in a dramatic decrease in the number of mature peroxisomes. The SARS-CoV-2 ORF14 protein was shown to interact physically with human PEX14, a peroxisomal membrane protein required for matrix protein import and peroxisome biogenesis. Given the important roles of peroxisomes in innate immunity, SARS-CoV-2 may directly target peroxisomes, resulting in loss of peroxisome structural integrity, matrix protein content and ability to function in antiviral signaling.


Subject(s)
Peroxisomes/virology , Animals , Cell Line , Cell Membrane/pathology , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/metabolism , Extracellular Matrix Proteins/metabolism , Humans , Membrane Proteins/metabolism , Peroxisomes/metabolism , Peroxisomes/pathology , Phosphoproteins/metabolism , Repressor Proteins/metabolism , SARS-CoV-2/metabolism , Vero Cells
14.
Methods Mol Biol ; 2203: 187-204, 2020.
Article in English | MEDLINE | ID: covidwho-729907

ABSTRACT

Biotin-based proximity labeling circumvents major pitfalls of classical biochemical approaches to identify protein-protein interactions. It consists of enzyme-catalyzed biotin tags ubiquitously apposed on proteins located in close proximity of the labeling enzyme, followed by affinity purification and identification of biotinylated proteins by mass spectrometry. Here we outline the methods by which the molecular microenvironment of the coronavirus replicase/transcriptase complex (RTC), i.e., proteins located within a close perimeter of the RTC, can be determined by different proximity labeling approaches using BirAR118G (BioID), TurboID, and APEX2. These factors represent a molecular signature of coronavirus RTCs and likely contribute to the viral life cycle, thereby constituting attractive targets for the development of antiviral intervention strategies.


Subject(s)
Coronavirus/pathogenicity , Enzymes/genetics , Host-Pathogen Interactions/physiology , Proteomics/methods , Viral Proteins/metabolism , Animals , Ascorbate Peroxidases/genetics , Biotinylation , Carbon-Nitrogen Ligases/genetics , Cell Line , Coronavirus/genetics , Enzymes/metabolism , Escherichia coli Proteins/genetics , Fluorescent Antibody Technique , Microorganisms, Genetically-Modified , Repressor Proteins/genetics , Viral Proteins/chemistry , Viral Proteins/genetics
15.
PLoS One ; 15(12): e0244025, 2020.
Article in English | MEDLINE | ID: covidwho-992706

ABSTRACT

Coronaviruses such as SARS-CoV-2 regularly infect host tissues that express antiviral proteins (AVPs) in abundance. Understanding how they evolve to adapt or evade host immune responses is important in the effort to control the spread of infection. Two AVPs that may shape viral genomes are the zinc finger antiviral protein (ZAP) and the apolipoprotein B mRNA editing enzyme-catalytic polypeptide-like 3 (APOBEC3). The former binds to CpG dinucleotides to facilitate the degradation of viral transcripts while the latter frequently deaminates C into U residues which could generate notable viral sequence variations. We tested the hypothesis that both APOBEC3 and ZAP impose selective pressures that shape the genome of an infecting coronavirus. Our investigation considered a comprehensive number of publicly available genomes for seven coronaviruses (SARS-CoV-2, SARS-CoV, and MERS infecting Homo sapiens, Bovine CoV infecting Bos taurus, MHV infecting Mus musculus, HEV infecting Sus scrofa, and CRCoV infecting Canis lupus familiaris). We show that coronaviruses that regularly infect tissues with abundant AVPs have CpG-deficient and U-rich genomes; whereas those that do not infect tissues with abundant AVPs do not share these sequence hallmarks. Among the coronaviruses surveyed herein, CpG is most deficient in SARS-CoV-2 and a temporal analysis showed a marked increase in C to U mutations over four months of SARS-CoV-2 genome evolution. Furthermore, the preferred motifs in which these C to U mutations occur are the same as those subjected to APOBEC3 editing in HIV-1. These results suggest that both ZAP and APOBEC3 shape the SARS-CoV-2 genome: ZAP imposes a strong CpG avoidance, and APOBEC3 constantly edits C to U. Evolutionary pressures exerted by host immune systems onto viral genomes may motivate novel strategies for SARS-CoV-2 vaccine development.


Subject(s)
COVID-19/genetics , Coronavirus/genetics , Cytidine Deaminase/genetics , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , APOBEC Deaminases , Animals , COVID-19/pathology , COVID-19/virology , Cattle , Coronavirus/classification , Coronavirus/pathogenicity , Dogs , Evolution, Molecular , Genome, Viral/genetics , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Swine/virology
16.
PLoS One ; 15(7): e0235987, 2020.
Article in English | MEDLINE | ID: covidwho-690896

ABSTRACT

Development of novel approaches for regulating the expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) is becoming increasingly important within the context of the ongoing COVID-19 pandemic since these enzymes play a crucial role in cell infection. In this work we searched for putative ACE2 and TMPRSS2 expression regulation networks mediated by various miRNA isoforms (isomiR) across different human organs using publicly available paired miRNA/mRNA-sequencing data from The Cancer Genome Atlas (TCGA) project. As a result, we identified several miRNA families targeting ACE2 and TMPRSS2 genes in multiple tissues. In particular, we found that lysine-specific demethylase 5B (JARID1B), encoded by the KDM5B gene, can indirectly affect ACE2 / TMPRSS2 expression by repressing transcription of hsa-let-7e / hsa-mir-125a and hsa-mir-141 / hsa-miR-200 miRNA families which are targeting these genes.


Subject(s)
Betacoronavirus , Coronavirus Infections/enzymology , Gene Expression Regulation , MicroRNAs/genetics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/enzymology , RNA, Messenger/genetics , Serine Endopeptidases/genetics , 3' Untranslated Regions , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/virology , Databases, Genetic , Gene Regulatory Networks , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , MicroRNAs/metabolism , Nuclear Proteins/genetics , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , RNA Isoforms/genetics , RNA, Messenger/metabolism , RNA-Seq , Repressor Proteins/genetics , SARS-CoV-2 , Serine Endopeptidases/metabolism , Single-Cell Analysis
17.
Mol Cell Endocrinol ; 515: 110917, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-661768

ABSTRACT

Obesity patients are more susceptible to develop COVID-19 severe outcome due to the role of angiotensin-converting enzyme 2 (ACE2) in the viral infection. ACE2 is regulated in the human cells by different genes associated with increased (TLR3, HAT1, HDAC2, KDM5B, SIRT1, RAB1A, FURIN and ADAM10) or decreased (TRIB3) virus replication. RNA-seq data revealed 14857 genes expressed in human subcutaneous adipocytes, including genes mentioned above. Irisin treatment increased by 3-fold the levels of TRIB3 transcript and decreased the levels of other genes. The decrease in FURIN and ADAM10 expression enriched diverse biological processes, including extracellular structure organization. Our results, in human subcutaneous adipocytes cell culture, indicate a positive effect of irisin on the expression of multiple genes related to viral infection by SARS-CoV-2; furthermore, translatable for other tissues and organs targeted by the novel coronavirus and present, thus, promising approaches for the treatment of COVID-19 infection as therapeutic strategy to decrease ACE2 regulatory genes.


Subject(s)
Adipocytes/drug effects , Fibronectins/pharmacology , Gene Expression Regulation/drug effects , ADAM10 Protein/genetics , ADAM10 Protein/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cells, Cultured , Coronavirus Infections/virology , Fibronectins/genetics , Fibronectins/metabolism , Furin/genetics , Furin/metabolism , Gene Ontology , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Biological , Molecular Sequence Annotation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Obesity/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , SARS-CoV-2 , Signal Transduction , Sirtuin 1/genetics , Sirtuin 1/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , rab1 GTP-Binding Proteins/genetics , rab1 GTP-Binding Proteins/metabolism
18.
Eur J Med Chem ; 203: 112653, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-645168

ABSTRACT

Flavaglines are cyclopenta[b]benzofurans found in plants of the genus Aglaia, several species of which are used in traditional Chinese medicine. These compounds target the initiation factor of translation eIF4A and the scaffold proteins prohibitins-1 and 2 (PHB1/2) to exert various pharmacological activities, including antiviral effects against several types of viruses, including coronaviruses. This review is focused on the antiviral effects of flavaglines and their therapeutic potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Subject(s)
Aglaia/chemistry , Antiviral Agents/therapeutic use , Biological Products/therapeutic use , Coronavirus Infections/drug therapy , Eukaryotic Initiation Factor-4A/genetics , Pneumonia, Viral/drug therapy , Repressor Proteins/genetics , Animals , COVID-19 , Eukaryotic Initiation Factor-4A/drug effects , Humans , Medicine, Chinese Traditional , Pandemics , Prohibitins , Repressor Proteins/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL